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Abstract

In credit markets, screening algorithms discriminate between good-type and bad-type bor-
rowers. This is their raison d'être. However, by doing so, they also often discriminate between
individuals sharing a protected attribute (e.g. gender, age, racial origin) and the rest of the pop-
ulation. In this paper, we show how to test (1) whether there exists a statistically signi�cant
di�erence in terms of rejection rates or interest rates, called lack of fairness, between protected
and unprotected groups and (2) whether this di�erence is only due to credit worthiness. When
condition (2) is not met, the screening algorithm does not comply with the fair-lending principle
and can be quali�ed as illegal. Our framework provides guidance on how algorithmic fairness
can be monitored by lenders, controlled by their regulators, and improved for the bene�t of
protected groups.
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1 Introduction

For their proponents, the growing use of Arti�cial Intelligence (AI) in credit markets allows pro-

cessing massive quantity of data using powerful algorithms, hence improving classi�cation between

good-type and bad-type borrowers.1 The resulting lower forecasting errors correspond to fewer

non-performing loans and less money left on the table for algorithmic lenders. Furthermore, credit

scoring algorithms permit to include small borrowers traditionally overlooked by standard screening

techniques used with standard data (Berg et al. (2020a)) and lead to higher responsiveness of the

credit supply to demand shocks and lower interest rates (Fuster et al. (2019)).

However, the development of AI has also stirred a passionate debate about the associated po-

tential discrimination biases (O'Neil (2017), Bartlett et al. (2021a)). Indeed, when automatically

assessing the creditworthiness of loan applicants, credit scoring models can place groups of individ-

uals sharing a protected attribute, such as gender, age, citizenship or racial origin, at a systematic

disadvantage. The latter can be in terms of either rejection rate or interest rate. For instance, the

Apple Pay app was publicly criticized for setting credit limits for female users at a much lower level

than for otherwise comparable male users (Vigdor (2020)). Using detailed administrative data on

US mortgages, Fuster et al. (2021) �nd that the use of machine-learning algorithm increases interest

rate disparity between White/Asian borrowers and Black/Hispanic borrowers. When it arises, such

di�erence is not only detrimental for the groups being unfavourably treated, it is also a potential

source concerns for algorithmic lenders as it leads to severe reputation risk and legal risk. Indeed,

under U.S. fair-lending law, lenders can only discriminate for creditworthiness reasons (Morse and

Pence (2020)).

However in practice, how can we know whether a credit-scoring algorithm discriminates against

a protected group only for creditworthiness? This question is particularly challenging to address

in the context of opaque, black-box algorithms analyzing thousands of features for each borrower,

covering credit and job history, transaction-level banking data, credit card data, social-media posts

or other forms of digital footprint, etc. In this paper, we design and implement a methodology

allowing algorithmic lenders, as well as their regulators, to address this question. We proceed in

three steps. First, we quantify the di�erence of treatment across groups and formally test whether

we can reject the null hypothesis of equality of treatment, which we call fairness. Treatment can

1In this paper, we use AI and Machine Learning (ML thereafter) interchangeably to describe algorithms able to
learn by identifying relationships within data and to produce predictive models in an autonomous manner.
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be considered either in terms of access to credit (acceptance rate) or price (interest rate). Second,

we propose a novel and simple interpretability technique, called Fairness Partial Dependence Plot

(FPDP), to identify the variables that cause the lack of fairness. Third, once the candidate variables

have been identi�ed, we check whether all these variables are legitimate in the lending context,

namely that they meet a legitimate business need that cannot reasonably be achieved otherwise.

Importantly, when some variables appear not being legitimate in the lending context, the algorithm

is not complying with the fair-lending principle and the resulting decisions could be challenged in

court.

In our analysis, we focus on several de�nitions of fairness which appear particularly relevant

in the lending context. The most commonly used de�nition, statistical parity, corresponds to the

equality of probability of being classi�ed as good type in all groups, i.e., those displaying the

protected attribute vs. those not displaying the protected attribute. We also make use of conditional

statistical parity, which states that the probability of being classi�ed as good type conditional on

both displaying the protected attribute (e.g. being a woman) and belonging to a given homogenous

risk class (e.g. range of income, range of job tenure, married, and no past credit event) is the same

in all groups. An advantage of this conditional version is to control for potential composition e�ects

across groups. Furthermore, in order to control for classi�cation errors, we also consider de�nitions

that condition on the type of borrowers.

In practice, algorithmic lending can lead to signi�cant di�erences in access to credit across groups

for various reasons. First, credit scoring algorithms can be trained on a dataset gathering past deci-

sions made by biased loan o�cers. In this case, the algorithms inherit and perpetuate human biases

in their decision-making. Alternatively, the scoring algorithm can learn from a dataset of actual

defaults that occurred in the past. Two cases arise: disparate treatment occurs when the algorithm

explicitly uses the protected attribute and disparate impact occurs when the lender use facially neu-

tral variables that are able, collectively, to synthetically reconstruct the protected attribute (Fuster

et al. (2021),Bartlett et al. (2021a), Prince and Schwarcz (2020), Bellamy et al. (2019)). In prac-

tice, disparate impact is more likely to occur with highly non-linear, non-interpretable, and opaque

scoring models, such as advanced ML algorithms.
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Our methodology �ts nicely within the US legal framework to ensure fairness in lending, and

in particular the Equal Credit Opportunity Act (ECOA) and Fair Housing Act (FHA), see Evans

(2017), Evans and Miller (2019), and Bartlett et al. (2021b). Under this framework, the plainti�s

making a claim of unintentional discrimination must demonstrate that a lending practice impacted

disparately on members of a protected group. This corresponds to our �rst step, namely testing the

null hypothesis of equality of treatment. If disparate impact has been shown, the framework then

demands that the burden shifts to the defendant to show that the practice is consistent with business

necessity. This is exactly the purpose of our second and third steps: identifying the variables that

cause the lack of fairness and checking their legitimacy in the lending context. Thus, our method

is a way to operationalize statistically the legal concept of fair lending for any scoring model.

We illustrate our fairness assessing framework by testing for gender discrimination in a database

of retail borrowers. First, we show that our tests are able to detect direct discrimination when gender

is explicitly used as a feature to assess creditworthiness. Second, when gender is not included in the

feature space, most considered scoring models turn out to be fair regardless of the considered metrics.

Interestingly, the null hypothesis of fairness is still rejected for some highly non-linear, �exible ML

models. Furthermore, we show that the choice of the parameters controlling the learning process of

the algorithms strongly impacts fairness. In models displaying a lack of fairness, our interpretability

technique identi�es the set of candidate features. Reassuringly, the selected features make sense as

they play a key role in the algorithm's decision rules. When scrutinizing candidates variables, we

discover two types of variables: (1) those who appear to be legitimate: they correlate with both

gender and default, and they have theoretical reasons to help forecasting default, and (2) those who

appear non-legitimate: exhibiting lower or no correlation with gender and default, as well as no

particular theoretical reasons to do so. We interpret the presence of less legitimate variables as an

indication that the algorithm may not comply with the fair-lending principle. Finally, we show how

to increase the fairness of the model, while controling for performance.

Making sure that AI algorithms treat individuals, and especially bank customers, in a fair way

is nowadays a top priority for governments and regulators, as demonstrated by recent reports and

white papers devoted to the governance of AI in �nance. For instance, the proposal for a regulation

of AI released by the European Commission in April 2021 states that "AI systems used to evaluate

the credit score or creditworthiness of natural persons should be classi�ed as high-risk AI systems

[...] AI systems used for this purpose may lead to discrimination of persons or groups and perpetuate
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historical patterns of discrimination, for example based on racial or ethnic origins, disabilities, age,

sexual orientation, or create new forms of discriminatory impacts".2 The potential discriminatory

biases of AI in �nancial services are also receiving a lot of attention by international media, think-

tanks, and consulting �rms.3 However, while the issue is now universally recognized, academics,

lenders, regulators, customer protection groups, lawers and judges are still lacking tools to look at it

in a fair and systematic way. The resulting high legal and regulatory uncertainties surrounding the

use of ML algorithms acts as an impediment for �nancial service providers to innovate and invest

in screening technologies (Evans (2017), Bartlett et al. (2021b)). We see our paper as an attempt

to �ll this gap.

We make several contributions to the literature on discrimination in lending. First, we propose

a standalone methodology to formally check whether a given credit scoring model complies with the

fair-lending principle. Beyong its academic value, it can be directly used in practice. For instance, it

could help algorithmic lenders to monitor the fairness of their models, or be used by their regulators

to set guidelines or control models. Our method could also prove handy for lawyers and judges

to conduct legal expertise. While we share the same objective of identifying illegitimate lending

practice, our approach di�ers in some important ways with the legal and economic framework of

Bartlett et al. (2021b). First, they focus on the input used by the algorithm whereas we develop a

backtesting approach focusing on algorithms' outcomes. Second, our framework relies on the concept

of algorithmic fairness, which has become a central concept for scholars working on algorithmic

discrimination in machine learning (Barocas et al. (2020)), law (Gillis and Spiess (2018)), and

business and economics (Kleinberg et al. (2018), Cowgill and Tucker (2020)).

Our second contribution is to propose the �rst inference tests for fairness de�nitions. This formal

approach o�ers several advantages: First, it allows us to assess fairness while taking into account

estimation risk. Fairness assessment is fundamentaly based on the comparison of conditional proba-

bilities (e.g., probabilities of being correctly classi�ed by the scoring model) accross di�erent groups,

which have to be estimated. Thus, controling for estimation risk is crucial to avoid misconclusions

about the fairness of the scoring model. Second, it can advantageously replace ad-hoc rules used

in practice, and in court, to decide whether decisions in di�erent groups of individuals are �similar

2Other recent examples include the recent reports published by US (Lael (2021)) or international regulators
(European Commission (EC (2020)), European Banking Authority (EBA (2020)), or French authority of banking
and insurance supervision (ACPR (2020)).

3For media coverage, see for instance Anselm (2020): "Is an Algorithm Less Racist Than a Loan O�cer?" - The
New York Times. For discussion by think-tanks, see the coverage by the Brookings institute, Klein (2020). For
coverage by consulting �rms, see Deloitte (2020) and PWC (2021).
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enough�. An example of such rules is the four-�ths rule, which states that a group is discriminated

against if and only if the rate of being favorably classi�ed in this group is less than 80% of the rate

in the rest of population.

Our third contribution is to show how to improve the fairness of machine-learning algorithms.

To do so, we develop a novel interpretability method allowing us to identify the variables with

the strongest impact on a fairness metric. We show how to treat some of these variables to reduce

non-legitimate di�erences between groups of applicants, yet maintaining a high level of performance.

The rest of our paper is structured as follows. We review the literature and legal framework on

discrimination in lending in Section 2 and we present several fairness de�nitions which are relevant

in the context of lending in Section 3. Section 4 details our common framework for testing for

discrimination biases in credit models. We illustrate our methodology in Section 5 using a dataset

of retail loans. Finally, we conclude our study in Section 6.

2 Discrimination in Lending

Discrimination in lending across demographic groups can take two main forms: higher rejection

rate and higher interest rates. Furthermore, it can happen at any stage of the life of a credit:

when applying for a new loan, when re�nancing it, or when asking for a credit limit extension.

Several standard economic theories can explain this phenomenon. Under taste-based discrimination

(Becker (1957)), some managers get utility from engaging in discrimination against individuals

sharing a protected attribute, and even so when these individuals are more productive. In this

setting, discriminating �rms are then not maximizing pro�t as they pass on economically-attractive

opportunities. Di�erently, under statistical discrimination (Arrow (1971), Phelps (1972)), �rms lack

information about the true creditworthiness of borrowers. One way to deal with this uncertainty is

to rely on the average historical creditworthiness of each group of borrowers, where groups rely on

protected attributes or other features. Alternatively, �rms can rely on variables that are correlated

with both creditworthiness and a protected attribute.

There is compeling empirical evidence about discrimination in lending. Bartlett et al. (2021a)

show that hispanic and African-American borrowers pay 7.9 and 3.6 basis points more in interest

for home-purchase and re�nance mortgages, respectively, because of discrimination (see also Bhutta

and Hizmo (2021)). These higher price tags represent 11.5% of lenders' average pro�t per loan.

As their identi�cation strategy neutralises the e�ect of creditworthiness, the authors can attribute
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this price di�erence to discrimination. Similarly, Bayer et al. (2018) �nd that after conditioning on

credit characteristics, African American and Hispanic borrowers were 103% and 78% more likely,

respectively, than other borrowers to be in a high-cost mortgage.4 D'Acunto et al. (2021) show, in

the context of an Indian peer-to-peer platform, that individual lenders from a given religious group

are reluctant to lend to the members of another religion and, at the same time, implement lax-

screening to borrowers from their religion. In her study of the pictures posted on the prosper.com

lending platform, Ravina (2019) �nds that good-looking borrowers are more likely to get a loan and

more likely to default. Dobbie et al. (2018) study the long-term pro�ts made by a high-cost lender

in the UK. They �nd that immigrant (respectively older) applicants yield long-term pro�ts that are

nearly four (two) times larger than native-born (younger) applicants. Conversely, they report no

bias against female applicants. Their �ndings suggest that these di�erences are mainly due to loan

o�cers' incentives, in line with Berg et al. (2020b).

The legal framework for discrimination in lending corresponds to the fair lending laws (Evans and

Miller (2019), Bartlett et al. (2021b), Bartlett et al. (2021a)). In the US, the Federal Reserve, along

with other consumer protection agencies, enforces two federal laws that ensure fairness in lending:

ECOA and FHA. The former applies to both consumer and commercial credit and prohibits credit

discrimination on the basis of racial origin, gender, color, age, national origin, marital status, or

receipt of income from any public assistance program. FHA applies to credit related to housing and

overlaps extensively with ECOA in terms of protected attributes, with the exception of handicap,

which is speci�c to FHA. Under these lending laws, two situations are unlawful: (1) disparate

treatment occurs when the lender treats a borrower di�erently because of a protected attribute

and (2) disparate impact occurs when the lender use facialy neutral variables that, both, adversely

a�ect the members of a protected group and do not meet a legitimate business need that cannot

be reasonably achieved otherwise. It is important to note that both situations remain unlawful

even if there is no conscious intent to discriminate. There are similar fair lending laws in most

jurisdications outside the US, although they are included in broader anti-discrimination laws (e.g.

UK and Canada). The European Union recognizes non-discrimination as a fundamental right as

shown in Article 21 of the EU Charter of Fundamental Rights: "Any discrimination based on any

ground such as sex, race, colour, ethnic or social origin, genetic features, language, religion or belief,

political or any other opinion, membership of a national minority, property, birth, disability, age or

sexual orientation shall be prohibited". However, each member state can develop its own legislation

4Other price di�erences are reported for women in Italy (Alesina et al. (2013)).

7



and enforcement policy. The resulting di�erences across countries make the EU anti-discrimination

regulation a less clear and coherent normative anchor than ECOA and FHA.

The rise of algorithms and big data in lending can have an important impact on the likelihood

and forms of discrimination. First, using an algorithm making objective decisions and applying same

standards to all customers can reduce or even remove taste-based discrimination (Philippon (2019)).

Supportive evidence is provided by D'Acunto et al. (2021) who show that robo-advising appears to

fully debias lenders by equating the share of borrowers of each religion in lenders' portfolios to the

share of borrowers of each religion on the Indian P2P platform they investigate. Similarly, Bartlett

et al. (2021a) �nd that the discrepancy between the rates charged to White and Black borrowers is

lower for algorithmic lenders than conventional lenders and that the former exhibit no disparities

in mortgage rejection rates. Furthermore, shifting to algorithmic lending can also aleviate the

pernicious e�ect of misaligned incentives as shown theoretically and empirically by Dobbie et al.

(2018).

Second, ML algorithms, and especially when implemented with large datasets, are likely to better

capture the structural relationship between observable characteristics and default (Jansen et al.

(2020)). Here the e�ect on discrimination can go both ways. On the one hand, as shown by Berg

et al. (2020a), combining advanced modeling techniques with non-standard data permits to include

small borrowers traditionally overlooked by standard screening techniques. Conceptually, ML can

also give access to credit to people who are credit invisible because of being unbanked or because

they lack credit history. On the other hand, the model and empirical evidence in Fuster et al. (2021)

indicate that ML increases rate disparity across groups of borrowers and bene�ts more White and

Asian borrowers than Black and Hispanic borrowers. Compared to standard parametric scoring

models (e.g. logistic regression), ML models introduce an additional �exibility which improves

out-of-sample classi�cation accuracy. However, the gains associated to this improvement are not

homogeneously distributed accross borrowers, as minorities may be a�ected by a triangulation e�ect.

The latter occurs when non-linear associations between the features proxy for the protected variable,

hence "de-anonymizing" the group identities only using non-protected attributes.5

Third, algorithms can re�ect and perpetuate human biases if the training of the algorithm is

made on past human decisions or if the training set lacks diversity (e.g. fewer women paying

back their loans in due time). This problem is particularly acute when the training set is not

5Triangulation is also labelled proxy discrimination, disparate impact, or indirect discrimination (Prince and
Schwarcz (2020)).
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representative of the entire population (see Dastin (2018) for a discussion of Amazon's infamous

automated CV screening device). Fourth, algorithm can accomodate the use of behavioral data

or digital footprints, which can exacerbate lending discrimination. As exlained by Evans (2017),

in Federal Trade Commision (FTC) vs. CompuCredit, the FTC alleged that the lender's scoring

model penalized consumers for using their cards for certain types of transactions, such as paying for

marriage counseling or therapy. Furthermore, a Department of Justice enforcement action involved

a lender whose models excluded borrowers with a Spanish-language preference.

How can we show that a given lending practice, algorithmic or not, is illegal because of discrim-

ination? As explained by Bartlett et al. (2021b), there is a long tradition in the US of applying the

burden-shifting framework to cases of statistical discrimination. Under this framework, plainti�s

must prove that a particular lending practice a�ects negatively and signi�cantly the members of a

protected group. If this is the case, the defendant must show that the practice is consistent with

business necessity. In case, the defendant is not able to provide compelling evidence that this is

indeed the case, the lending practice is said to be illegitimate, and then illegal.

Consistent with this framework, Bartlett et al. (2021b) formulate a statistical test to apply to the

design and review of the inputs used in any algorithmic decision-making processes. Their test, called

input accountability test, seeks to exclude variables that are correlated with both default and the

protected attribute. An alternative approach is to rely on the output or outcome of the algorithm.

According to Cowgill and Tucker (2020), outcome-based approaches are preferable as they exhibit

more �exibility, fewer loopholes, greater e�ciency, and stronger incentives for innovation. One

common outcome-based approach is to rely on a fairness de�nition. A critic often addressed to this

approach is that there are multiple de�nitions of fairness, and that several of them are incompatible

with one another (Berk et al. (2021)). As a result, using such approach requires a pre-speci�ed

level of discrimination that is permissible in the outcomes (Gillis and Spiess (2018)). In practice,

the level of tolerance is set arbitrarily. For instance, the Uniform Guidelines on Employee Selection

Procedures, adopted in 1978 by the Equal Employment Opportunity Commission (EEOC (1978))

introduces the 80% rule as follows "a selection rate for any racial origin, sex, or ethnic group

which is less than four-�fths (4/5) (or eighty percent) of the rate for the group with the highest

rate will generally be regarded by the Federal enforcement agencies as evidence of adverse impact,

while a greater than four-�fths rate will generally not be regarded by Federal enforcement agencies

as evidence of adverse impact." Di�erently, below we propose an output-based method in which the
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level of tolerance is given by statistical theory.

3 Measuring fairness

3.1 Framework and notations

We consider a bank using an algorithm to screen borrowing applications. The binary output label

Y takes values in Y = {1, 0} where the value 1 corresponds by convention to the favorable output.6

In the context of credit scoring, examples of favorable outcome include loan-application approval,

re�nancing approval and overdraft authorization, etc. For convenience, we will thereafter use the

good type (Y = 1) vs. bad type (Y = 0) terminology. The vector X denotes the non-protected

features, which include borrower features (e.g., income, assets, debt-to-income ratio, age, occupation,

banking and payment data) and contract terms (e.g. loan size, loan-to-value ratio). We denote by

D the sensitive or protected attribute (e.g. racial origin, gender, age, religion). In the following,

we model the protected attribute as a binary variable, D = {0, 1}, where the value 1 refers to an

applicant belonging to the protected group and 0 an applicant belonging to the unprotected group.7

The goal of the bank is to build a scoring model which maps the observable non-protected

featuresX into a conditional probability for an applicant of being good type, p (X) = Pr (Y = 1|X).

This probability is then transformed into a predicted outcome Ŷ taking a value 1 when p (X) is

above a given threshold δ ∈ ]0, 1[ and 0 otherwise. We denote by f (X) the classi�er mapping X into

the Ŷ , with Ŷ = f (X). We impose no constraint on the f function: it can be parametric (logistic

regression for instance) or not, linear or not, an individual or ensemble classi�er which combines a

set of homogeneous or heterogeneous models, etc.8 We only assume that the bank does not use the

sensitive attribute D as input for its scoring model.

3.2 Fairness de�nitions

The literature on designing fair algorithms is extensive and interdisciplinary. Many fairness criteria

have been used over the years in computer science, machine learning, criminology, and economics,

each aiming to capture di�erent dimensions of fairness (see Hardt et al. (2016), Verma and Rubin

6The framework can be easily adapted to a continuous outcome Y ∈ Y ⊂R, for instance where Y ∈ [0, 1] denotes
the loan interest rate. In this case, conditional probabilities Pr (Y = 1|X,D) are replaced by conditional expectation
E (Y = 1|X,D).

7This setup can be easily extended to a set of q sensitive attributes D1, . . . , Dq, each of them representing a speci�c
protected group (for instance where D1 controls for gender, D2 for age, and so on) or representing the di�erent values
of a categorical variable associated to a unique source of potential discrimination (D1 for Asian-American borrowers,
D2 for African-American borrowers, etc.).

8See Lessmann et al. (2015) for an overview and comparison of credit scoring models.
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(2018), Kleinberg et al. (2018), Bellamy et al. (2019), Barocas et al. (2020), Lee and Floridi (2020),

or Berk et al. (2021)). Here we focus on the formal de�nitions of four popular fairness metrics

which are particularly relevant in credit scoring: statistical parity, equal odds, predictive parity,

and overall accuracy.

De�nition 1 A credit scoring model satis�es the statistical parity assumption if the predicted

label and the sensitive attribute are independent, i.e., if Ŷ ⊥⊥ D.

The main idea is that all applicants should have an equivalent opportunity to obtain a good

outcome from the credit scoring model, regardless of their group membership. Expressed in terms

of conditional probabilities, statistical parity implies:

Pr(Ŷ = 1|D = 1) = Pr(Ŷ = 1|D = 0) = Pr(Ŷ = 1) (1)

In practice, the di�erence in opportunity may be due to a composition e�ect, rather than to dis-

crimination. As a result, it can be more informative to compare similar applicants from protected

and unprotected groups, with the comparable individual features (income, job, diploma, etc.). This

is precisely the concept of conditional statistical parity.

De�nition 2 A credit scoring model satis�es the conditional statistical parity assumption if the

predicted label and the sensitive attribute are independent, controlling for a subset of non-protected

attributes Xc ⊆ X, i.e., if Ŷ ⊥⊥ D|Xc.

This de�nition raises the issue of the choice of the conditioning attributes. The goal is to

control for the variables that are known to have a �rst-order impact on creditworthiness in order

to constitute homogeneous risk classes. Alternatively, one can rely on a clustering algorithm to

partition the individuals into the risk classes, which has the advantage of not selecting the important

variables ex-ante. Finally, another approach is to rely on exogenous classi�cation, such as the Basel

classi�cation.9 In all three cases, the statistical parity diagnosis is carried out in each class separately.

When all the classes display the same conclusion, the aggregation is trivial. However, when there

are some disagreement across classes, an aggregation rule must be used. We can think of two

approaches. The �rst one is to use an economic rule, such as rejecting the hypothesis of global

fairness if at least one class displays a signi�cant di�erence, if the majority of the classes displays

9The number of classes considered N plays an important role. Indeed, the larger the N , the more homogenous the
sub-groups are (cleaner test), the more likely at least one sub-group is found to be unfair, and the smaller the number
of individuals in each sub-group (hence the more di�cult it is to �nd signi�cant results proving lack of fairness).
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a signi�cant di�erence, or if the majority of the individuals belong to classes in which fairness is

rejected, etc. A second approach is to rely on a formal statistical test and we will discuss it in the

following section.

Statistical parity only focuses on the di�erences of treatment across groups in terms of output

Ŷ . The other fairness de�nitions that we consider below are based on the joint distribution of the

triplet (Y, Ŷ ,D). By considering the di�erence between the observed and forecasted outcomes for

protected and unprotected groups, these approaches permit to test whether there are some di�erence

of treatment across groups in terms of classi�cation errors.

De�nition 3 A credit scoring model satis�es the equal odds property, if the predicted outcome Ŷ

and the protected attribute D are independent conditional on the actual outcome Y, i.e., if Ŷ ⊥⊥ D|Y .

Unlike statistical parity, equal odds allows Ŷ to depend on D but only through the target

variable Y . It implies that clients with a good credit type and clients with a bad credit type should

have similar classi�cation, regardless of their (protected or unprotected) group membership. Thus,

a credit scoring model is considered fair if the predictor has equal True Positive Rates (TPR, i.e.,

probability of the truly positive subject to be identi�ed as such) and equal False Positive Rates (FPR,

i.e., probability of falsely accepting a negative case).10 This implies the following two constraints:

Pr(Ŷ = 1|Y = y,D = 0) = Pr(Ŷ = 1|Y = y,D = 1) = Pr(Ŷ = 1|Y = y), y ∈ {0, 1} (2)

A possible relaxation of equalized odds is to require non-discrimination only within the advantaged

outcome group. That is, to require that people who actually pay back their loan, have an equal

opportunity of getting the loan in the �rst place. This relaxation is often called equal opportunity.

Formally, it implies Ŷ ⊥⊥ D |Y = 1 and the equality of the TPRs for the protected and unprotected

groups:

Pr(Ŷ = 1|Y = 1, D = 0) = Pr(Ŷ = 1|Y = 1, D = 1) = Pr(Ŷ = 1|Y = 1) (3)

Conversely, a second relaxation called predictive equality, re�ects the equality of the FPRs for both

groups and corresponds to the assumption Ŷ ⊥⊥ D|Y = 0.

Pr(Ŷ = 1|Y = 0, D = 0) = Pr(Ŷ = 1|Y = 0, D = 1) = Pr(Ŷ = 1|Y = 0) (4)

10The equality of FPR and TPR implies the equality of the odds, i.e., the ratios of probabilities of success (good
type) and failure (bad type).
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Equal odds, equal opportunity, and predictive equality allow for a perfectly accurate solution Y = Ŷ ,

which is not the case for statistical parity. Thus, it allows aligning fairness with the central goal in

supervised learning of building more accurate predictors.11

4 Fairness diagnosis

4.1 Fairness inference

If we know the joint distribution of the random variables (Ŷ , Y,D), we can determine without

any ambiguity whether this joint distribution satis�es any fairness de�nition. However, in practice

we must take this decision from a sample. Then, the implementation of the previous fairness

de�nitions requires being able to conclude from this sample whether the assumptions of (conditional)

independence between the variables Ŷ , Y , and D are satis�ed or not. Here, we propose a general

testing methodology that considers estimation uncertainty to statistically test for the fairness of a

credit scoring model.

We consider a sample Sn of n observations {yj , xj , dj}nj=1 issued from the joint distribution

pY,X,D, where the index j denotes the jth credit applicant. Based on this sample, the credit

scoring model produces a set of decisions {ŷj}nj=1. Considering the sample {ŷj , yj , dj}nj=1, we

wish to test whether the credit scoring model satis�es a particular fairness de�nition indexed by

i ∈ {SP,CSP,EO,EOP, PE} with:

H0,SP : Ŷ ⊥⊥ D H0,CSP : Ŷ ⊥⊥ D|Xc H0,EO : Ŷ ⊥⊥ D|Y

H0,EOP : Ŷ ⊥⊥ D|Y = 1 H0,PE : Ŷ ⊥⊥ D|Y = 0

where SP stands for statistical parity, CSP for conditional statistical parity, EO for equal odds,

EOP for equal opportunity, and PE for predictive equality. Formally, we denote a fairness test

statistic as:

FH0,i ≡ hi(Ŷj , Yj , Dj ; j = 1, . . . , n) = hi (f (Xj) , Yj , Dj ; j = 1, . . . , n) (5)

where hi (.) denotes a functional form that depends on the null hypothesis H0,i which is considered,

the scoring model f , and the sample {ŷj , yj , dj}nj=1. As all fairness metrics can be expressed in terms

of independence assumptions, we can derive speci�c inference. Under the null hypothesis H0,i, we

11The impossibility theorem of Kleinberg et al. (2017) states that no more than one of the three fairness de�nitions
of statistical parity, predictive parity, and equal odds can hold at the same time for a well calibrated classi�er and a
given protected attribute.
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assume that the test statistic FH0,i has a Fi distribution, and we denote d1−α the corresponding

critical value at α% signi�cance level.

To the best of our knowledge, this is the �rst time that a formal inference procedure is introduced

in the context of fairness assessment. Such approach o�ers several advantages. First, whatever

the test statistic considered, fairness inference allows us to consider estimation uncertainty when

comparing conditional probabilities for protected and unprotected groups. Second, it allows to �x

the probability of incorrectly deciding that a scoring model is unfair. Third, beyond estimation risk,

the need for inference in fairness evaluation comes from the fact that most metrics are conditional.

Thus, their assessment implies a comparison of outcomes for di�erent classes of the credit applicants,

where each class corresponding to a particular set of values of the conditioning variable(s). For

instance, conditional statistical parity implies to test the independence between the predicted default

Ŷ and the protected attribute D for di�erent classes of credit applicants, pooled according to the

borrower and loans characteristics. In this context, fairness test statistics are useful because they

allow for a global (aggregate) diagnosis without regard to utility functions.

The notation for Fi encompasses a wide class of test statistics which can be implemented in this

context. For instance, one can use the chi-squared conditional independence test, the Cochran�

Mantel�Haenszel (CMH) test, the z-tests associated to the hypothesis tests of the di�erence, ratio,

or odds ratio of two independent proportions, or a likelihood ratio test. For ease of presentation, in

the sequel we only consider standard chi-squared conditional independence tests (cf. Appendix A.1

for a formal presentation).

As an illustration, let us a consider a numerical example. We assume that a regulator whishes

to test whether a scoring model satis�es the null hypothesis of conditional statistical parity H0,CSP

by considering a sample 1, 000 individuals, among which 310 belong to the protected group. These

individuals are divided into two classes, labeled C1 (827 borrowers) and C2 (173 borrowers) respec-

tively, according to their characteristics Xc. The empirical distribution of the predicted oucome Ŷ

and the protected attribute D is displayed in Figure (1) for the two groups.

Insert Figure 1

For each class, we compute the standard Pearson's chi-squared test statistics, respectiveley

denoted χ2
1 and χ

2
2, by comparing the empirical distribution of (Ŷ , D) to the theoretical distribution

under the null of independence. We get a realization of χ2
1 = 13.15 for the �rst class and χ2

2 = 3.24
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for the second one.12 Under the null, each individual statistic follows a χ2
(1) distribution. For a

5% signi�cance level, the critical value is equal to d21,0.05 = 3.84, thus we reject the null hypothesis

Ŷ ⊥⊥ D for the borrowers in class C1, whereas we do not reject the null for the borrowers in

class C2. To aggregate these diagnoses, we compute a conditional test statistic FH0,CSP
simply

de�ned as the sum of the individual chi-squared statistics, i.e., FH0,CSP
= χ2

1 + χ2
2 ∼ χ2

(2). As

FH0,CSP
= 16.39 > d22,0.05 = 5.99, we reject the null hypothesis H0,CSP of conditional statistical

parity, i.e., Ŷ ⊥⊥ D|Xc. This example illustrates the fact that the choice of the conditional test

statistics implies a particular ordering (or preference relationship) on the cross-sectional pro�le of

the fairness diagnostic among classes.

4.2 Fairness interpretability

Interpretability is a the heart of the �nancial regulators' current concerns about the governance

of AI, especially in the credit scoring industry. Here, we de�ne interpretability as the degree to

which a human can understand the cause of a decision (Miller (2019)). It is important to note that

interpretability does not necessarily implies fairness. Even if the decisions issued from a model are

interpretable, they may treat unfavorably a group of users sharing a protected attribute. Conversely,

the absence of discrimination is compatible with both interpretable or non-interpretable models.

There are di�erent ways to interpret machine learning models and their decisions. We can dis-

tinguish between interpretable models and uninterpreatable models. Intrinsic interpretability refers

to ML models that are considered interpretable due to their simple structure, such as decision trees

or linear models. Di�erently, black-box models, such as random forests or deep neural networks,

have observable input-output relationships, but lack clarity around inner workings. This means

that clients, regulators, and other stakeholders, even those who design the models, cannot easily

understand how variables are being combined to make the risk predictions and to deliver the credit

approval decision. To allow interpreting predictions of black box ML models, various model-agnostic

methods have been developed (see Molnar (2019) for an overview). For instance, the Partial Depen-

dence Plot (PDP) displays the marginal impact of a speci�c feature on the outcome Ŷ of a model.

12Among the 827 borrowers in C1, 611 have been classi�ed as low-risk (Ŷ = 1) by the model, 216 as high-risk

(Ŷ = 0), and 270 borrowers belong to the protected group. The standard Pearson's chi-squared test statistic (see
Appendix A.1 for more details) for the class C1 is:

χ2
1 = (433− 557× 611/827)2/(557× 611/827) + (124− 557× 216/827)2/(557× 216/827)

+(178− 611× 270/827)2/(611× 270/827) + (92− 270× 216/827)2/(270× 216/827) = 13.15
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This plot is useful to explore whether the relationship between the target and a feature is linear or

more complex. These methods have the advantage to be model-free in the sense that they allow

explaining predictions of arbitrary ML models independently of its form, its implementation, or its

internal model parameters.

Instead of focusing on the interpretability of the outcome of the model, we focus on the in-

terpretability of its fairness metric. We de�ne fairness interpretability as the degree to which an

applicant, a regulator, or any stakeholder, can understand the cause of a discrimination with re-

spect to a given protect attribute induced by a machine learning model, if there exists. Here, we

propose a simple model-agnostic method which we call Fairness Partial Dependence Plot (FPDP).

The latter displays the marginal e�ect of a speci�c feature on a fairness diagnosis test associated to

a credit scoring model. The logic of the FPDP is similar to that of PDP, except that we explore the

relationship between one feature and a fairness test output. The goal of the FPDP is to identify

the feature(s) at the origin of the discrimination bias and the rejection of the null hypothesis of

fairness, whatever the hypothesis considered. These variables are called candidate features.

Formally, denote by XA the feature for which we want to measure the marginal e�ect, XB are

the other features, and f (.) is the credit scoring model such that Ŷ = f (XA, XB). Rewrite the

fairness test statistic as:

FH0,i ≡ hi(Ŷj , Yj , Dj ; j = 1, . . . , n) (6)

= hi(f (XA,j , XB,j) , Yj , Dj ; j = 1, . . . , n) (7)

= h̃i(XA,j , XB,j , Yj , Dj ; j = 1, . . . , n) (8)

with h̃ (.) a nonlinear positive function. We have to distinguish two cases depending on whether

XA is a categorical feature or a continuous feature.

De�nition 4 Consider a categorical feature XA ∈ {c1, . . . , cp}, the corresponding FPDP is:

FH0,i (ck) = h̃i ((ck, xB,1, y1, d1), . . . , (ck, xB,n, yn, dn)) ∀k = 1, . . . , p (9)

Consider a continuous feature XA ∈
[
xmin
A , xmax

A

]
, the corresponding FPDP is de�ned as:

FH0,i (x) = h̃i ((x, xB,1, y1, d1), . . . , (x, xB,n, yn, dn)) ∀x ∈
[
xmin
A , xmax

A

]
(10)

The FPDP associated to the ck category displays the realization of the fairness test statistic

obtained when the categorical feature XA takes a value ck for all instances, whatever their other
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features. In the continuous case, the FPDP associated to the value x corresponds to the fairness

test statistic obtained when the feature XA takes the value x for all instances, whatever their other

features. Notice that for a given scoring model, the FPDP depends on the null hypothesis i which

is considered. Thus, we can de�ne a FPDP with respect to (conditional) statistical parity, equal

odds, equal opportunity, or predictive equality.

The FPDP allows to identify the feature(s), called candidate variable(s), which are causing the

lack of fairness. Whatever the type of the feature (continuous or categorical), consider a case for

which the null of fairness is initialy rejected as FH0,i > d1−α where d1−α is the critical value of the

test for α% signi�cance level associated to the null distribution Fi. A given feature is identi�ed as

a candidate variable, if changing its value reverses the fairness diagnosis.

De�nition 5 A feature XA is considered as a candidate variable, if there exists at least one value

ck ∈ {c1, . . . , cp} (categorical variable) or x ∈
[
xmin
A , xmax

A

]
(continuous variable), such that FH0,i (ck) <

d1−α or FH0,i (x) < d1−α.

The FPDP has two main advantages. First, FPDP is a model agnostic method. Regardless of

the ML algorithm used by data scientists, the fairness of the credit approval decision can always

be assessed. Second, FPDP breaks correlations among features. Indeed, in case of disparate im-

pact, some features are correlated with the protected attribute and leads to signi�cantly di�erent

outcomes for protected and unprotected groups. Disparate impact can arise in two cases: either

when one feature correlates with the protected attribute, or when a set of features collectively

proxy for the protected attribute. The latter is likely to occur in �exible, non-linear ML algorithms.

Thus, breaking the correlations between the features and the protected attribute, and/or among

these proxy features allows us to identify the candidate variables, as it induces a change in the

fairness diagnosis. Thus, contrary to standard PDP, FPDP does not assume that the features are

independent.13

13In a standard PDP analysis, it is assumed that features are independent. This assumption is problematic as such
analysis overlooks the indirect e�ects of a feature (through other features) on the outcome.
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5 Application

5.1 Data

We illustrate our methodology using the German Credit Dataset (Dua and Gra� (2019)), which

includes 1,000 consumer loans extended to respectively 310 women and 690 men.14 For each appli-

cant, we know his or her actual credit risk type, called credit risk : good-type or low-risk (Y = 1) vs.

bad-type or high-risk (Y = 0) (see Verma and Rubin (2018) for details). This variable is our target

variable. In total, 300 borrowers are in default (Y = 0) among which 191 are men and 109 women.

Moreover, there are 19 explanatory variables measuring either some attributes of the borrower (e.g.,

gender, age, occupation, credit history) or some characteristics of the loan contract (e.g., amount,

duration). More information about the database can be found in Table A.2 in the appendix.

Insert Figures 2 and 3

We start by contrasting in Figure 2 the distributions of each of the 20 variables for men and

women. We clearly see that the default rate is higher for women (35.16%) than for men (27.68%).

Moreover, women borrowers tend to be younger and to exhibit a lower home-ownership rate and

employment duration. However, being correlated with gender does not imply that this feature

necessarily leads to a di�erent treatment between men and women. It is only when this feature is

also driving the target variable that it may lead to discrimination. As a result, one needs to go

beyond histograms and quantify the association with default.

In Figure 3, we present a scatter plot of Cramer's V, which is a measure of association between

two variables.15 The X-axis displays the association between each explanatory variable and the tar-

get variable whereas the Y -axis does so for each explanatory variable and gender. By construction,

the top-right region of the plot includes variables that are both gendered and with a strong ability

to classify between good and bad-type borrowers. While such variables would be natural candi-

dates for inducing a classi�cation algorithm to put any woman borrower in the high-risk category,

we have no obvious candidate example. Moreover, central to this analysis is the substitution that

exists between being associated with gender or with default. Hence, one may think about these

variables in terms of "indi�erence curves" connecting variables displaying a comparable level of

14In the initial database, the gender and the marital status of the applicants are speci�ed in a common attribute
with �ve categorical values (single male, married male, divorced male, single female, married or divorced female).
Here, as we focus on gender discrimination whatever the marital status, we consider a binary variable representing
the single, married, or divorced females (protected group) versus the single, married, or divorced males (unprotected
group). The original database can be found here.

15The Cramer's V varies from 0 (corresponding to no association between the variables) to 1 (complete association).
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potential impact on fairness: either being strongly associated to gender but mildly to default (e.g.,

age), being moderately associated with both (e.g., purpose), or being mildly associated to gender

but strongly to default (e.g., account status). Everything else held constant, variables located on

an indi�erence curve further away from the origin are more likely to lead the algorithm to grant a

less favorable credit score to women than to men.

5.2 Credit scoring models

We place ourselves in the con�guration of a bank that seeks to assess the creditworthiness of its

customers through the development of a credit scoring model. Before modelling credit default,

we apply various pre-treatments to the dataset. First, we transform the 11 categorical variables

into binary variables. Doing so is standard practice as it gives more degrees of freedom to the

algorithms and permits to better exploit their inherent �exibility. Second, we remove the binary

variable foreign worker from the set of features, as we do not want to mix two possible sources of

discrimination. Such pre-treatment leads us with a total of 55 explanatory variables. In general,

the dataset is split into a training subsamble (in-sample calibration) and a testing subsamble (out-

of-sample estimation). Here, we deviate from this and estimate all scoring models using the whole

sample in order to have enough observations when conducting conditional fairness tests.

We estimate a set of increasingly sophisticated credit scoring models to predict default (see

Lessmann et al. (2015) for a survey), namely logistic regression (LR), penalized logistic regression

(Ridge), classi�cation tree (TREE), random forests (RF), XGBoost (XGB), support vector machine

(SVM), and arti�cial neural networks (ANN). Thus, we consider both standard parametric regres-

sion models (LR and Ridge) and machine-learning models, able to extract non-linear relationships.

We estimate individual classi�ers (SVM, TREE, ANN) as well as ensemble methods (RF, XGB),

which have proved to perform well for credit scoring applications (Lessmann et al. (2015)). Most im-

portantly, our analysis includes intrinsically interpretable models or white-box models (LR, Ridge,

TREE) and black-box models (RF, ANN) as our fairness diagnosis method can accomodate both

types of models. In practice, the performance of ML models (and, as shown below, their fairness

diagnosis) is quite sensitive to the value of the parameters used to �ne tune the model and control

the learning process. In the present study, we determine hyperparameter values using a ten-fold

cross-validation and a random search algorithm.16 For ANN, we standardize continuous features to

16We split the dataset into ten subsamples. We use nine of them for in-sample calibration, while using the remaining
one for out-of-sample testing. This procedure is carried out ten times by changing the subsample used out-of-sample.
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speed up the convergence of the optimization algorithm.

We �rst estimate the credit scoring models by including gender in the list of the explanatory

variables and refer to these models as the with-models. While this may not be a particularly realistic

setting, as banking regulatory authorities typically prevent lenders from including gender in scoring

models, it constitutes a useful reference point in our controlled experiment. As these models will

ultimately be used to check whether our fairness tests are able to detect disparate treatment, we

make sure that the gender variable is selected in each model. As a result, we may not select the

best performing models among all possible ones. Panel A of Table 1 displays the performance of the

seven considered with-models. we measure performance using the percentage of correct classi�cation

(PCC) and the area under the curve (AUC). We see that all considered models perform well as the

PCC ranges between 76.4 and 87.3 and the AUC between 0.811 and 0.938. The best performance

is achieved by the RF model and the lowest one by the Ridge logistic regression model.

In a second step, we rerun all models after removing gender from the analysis, and we call these

models the without-models. In this case, if a gender discrimination occurs, it is necessarily through

indirect discrimination due to features being correlated with the protected attribute. Panel B of

Table 1 displays the PCC and AUC values for the seven without-models. Overall, the performance

remains quite good, as none of the performance measures changes by more than �ve percentage

points and RF remains the best performing model.17

Insert Table 1

5.3 Fairness diagnosis

We now turn to implementing our inference tests for algorithmic fairness derived in Section 4.1. To

do so, we use the scoring models estimated in the previous section as test algorithms. We �rst verify

whether there is disparate treatment by considering the six alternative fairness measures described

in Section 3.1 (i.e., statistical parity, conditional parity, equal odds, predictive equality, and equal

opportunity) and the seven with-models.

We report in Table 2 for each with-model the p-value associated with a given null hypothesis

of fairness. Overall, the message is clear as the null hypothesis of fairness is rejected at the 95%

Within this process, the random search algorithm trains the considered credit scoring models based on di�erent
hyperparameter settings. Finally, the random search algorithm chooses the hyperparameter values with the highest
average accuracy across all subsamples. See Appendix A.5 for more information about hyperparameters.

17As we only consider with-models that selects the gender variable, we disregard some models with a higher in-
sample performance. We do not have similar constraints when dealing with without-models. As a result, some models
have a better in-sample performance without gender than with gender.
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con�dence level for most model - fairness measures combinations. These results con�rm the good

performance of our tests whatever the scoring model and the fairness de�nition considered. One

exception is when we split the sample into two groups using a K-Prototypes clustering algorithm

in order to test for conditional statistical parity. Group 2 gathers individuals borrowing relatively

higher amounts and over longer periods and exhibit a more unstable credit history (cf. Appendix

A.3). The result of the conditional statistical parity test indicates that we cannot reject the fairness

null hypothesis in Group 2. This is due to the fact that most of these individuals are so high-risk

that their gender no longer in�uences the model predictions. Conversely, individuals in Group 1

exhibit more diverse risk pro�les and display signi�cant rejection rates between men and women. At

the aggregate level, the global conditional parity test leads to reject the null hypothesis of fairness

for all models at the 95% con�dence level.

Insert Table 2

To know whether the scoring models also leads to indirect discrimination, we remove gender

from the scoring models. Table 3 displays similar results as in Table 2 but for without-models.

For most models, we do not reject anymore the null hypothesis of statistical parity. This suggests

that the lack of fairness previously detected was actually due to direct discrimination. We reach a

similar conclusion using conditional statistical parity, equal odds, equal opportunity, and predictive

equality.18 Di�erently, with the ANN model, we reject the null fairness hypothesis as the p-values

associated with (conditional) statistical parity are around 0.01. For this model, removing the

gender variable is not a su�cient condition to safeguard members of the protected group. There is

indeed evidence for indirect discrimination, most likely through the combination of variables able

to replicate or produce a synthetic version of the gender variable. The fact that the ANN is the

only model for which gender discrimination occurs is not a coincidence, as this model is one of the

most �exible classi�ers considered in the present study.

Insert Tables 3 and 4

In a �nal step, we illustrate the important role played by operational risk. Indeed, we show

that the choice of the hyperparameters used to control the learning process of credit scoring models

18This result may be surprising at �rst glance given the fact that the impossibility theorem of Kleinberg et al.
(2017) states that no more than one fairness de�nition can hold at the same time. However, the impossibility

theorem concerns the true joint distribution of (Y, Ŷ ,D) that we do not observe in practice. When using a �nite
sample of loans and accounting for estimation risk, it is possible to not reject the null for two or more fairness
de�nitions. Inference here allows us to consider the uncertainty associated with the estimates, while controlling for
the risk of falsely rejecting the fairness null hypothesis.
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can have strong consequences in terms of fairness. To illustrate our point, we consider an alterna-

tive TREE model, call TREE prime, which is based on a slightly modi�ed set of hyperparameters.

Speci�cally, TREE prime relies on a procedure commonly used in the credit scoring industry (Less-

mann et al. (2015)), based on a k-fold cross-validation and a random search algorithm.19 This

alternative technique (1) is state-of-the-art and could be put in production by a lender, (2) is in

some dimensions more general , and in other dimensions more restrictive than the original one, (3)

leads to a slightly lower, yet quite good, performance, PCC = 79.0 vs. 81.5. However, we see in

Table 4 that it leads to drastically di�erent conclusions in terms of fairness. Indeed, for TREE

prime, we reject the null hypothesis of fairness for virtually all metrics at the 95% con�dence level.

5.4 Interpretability and mitigation

In the previous section, we have identi�ed several scoring models that were classi�ed as unfair by

our testing procedure. We are now going to identify the variable(s) that are at the origin of the

fairness concern. As an example, we consider the TREE-prime model as it has been shown to

exhibit a signi�cant lack of fairness. This conclusion was reached for statistical parity, conditional

statistical parity, equal odds, and equal opportunity. As in any decision tree, the underlying process

of construction of the model as a recursive partitioning of the space of explanatory variables can be

plotted as a tree diagram (See Figure 7 in the Appendix). We observe that 14 features have been

selected by the TREE algorithm, namely housing, number of credits, credit amount, telephone,

installment rate, property, age, other installment plans, account status, credit duration, credit

history, purpose, saving, and employment duration.

We now implement the FPDP associated to the statistical parity null hypothesis. The individual

plots associated with the 14 considered features are reported in Figure 4. Recall that in the initial

sample (see Table 4), the statistical parity test leads to the rejection of the null hypothesis of

fairness or in other words, the p-value is smaller than the 10% threshold. As explained in the

previous section, a feature is said to be a candidate variable if setting the same value of this variable

to all borrowers leads to the non-rejection of the null hypothesis (i.e., p-value > 10%).

As shown in Figure 4, we identify six candidate variables, namely credit duration, credit history,

purpose, savings, account status, and telephone.20 The analysis of the decision tree reported in the

19We reduce the set of values for the maximum depth of the tree from 1-29 to 1-9, we increase the set of values for
the minimum number of instances required to split a node from 2-9 to 2-59, and we increase the set of values for the
minimum number of individuals by leaf from 1-19 to 1-59.

20For the account-status variable, the test statistic cannot be de�ned for one modality since all predicted outcomes
are equal to 1, meaning that it is independent from gender (no rejection of the null hypothesis).
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Appendix con�rms the consistency of the results issued from FPDPs. First, features not identi�ed

as candidate variable (e.g. credit amount) are only included in paths where all leaf nodes are

associated to the same class label (Ŷ = 0 or Ŷ = 1). Second, all the candidate variables are features

which partition the data space into leaves associated to positive and negative labels. Third, all the

features used to split the credits between positive and negative lables are not necessarily identi�ed

as candidate variables (e.g., property). In our case, only credit history is identi�ed as candidate

variable, which illustrates the added value of our FPDP analysis.21

Insert Figures 4 and 5

In a �nal stage, we show that the variables identi�ed as causing the statistically signi�cant

di�erence in rejection rates between men and women are not all consistent with business necessity.

As a result, our method indicates that this particular algorithm is, in this sample, violating the

fair-lending principle and can be quali�ed as illegal. To prove this, we start by highlighting in

red, in Figure 5, the six features identi�ed as candidate variables. We see that �ve of them are

signi�cantly correlated with the target variable and with gender. These variables correspond to

legitimate variables which are theoretically related to default and regularly used in credit scoring

models. In other words, they constitute legitimate variables when forecasting the default of a

pool of retail borrowers. Di�erently, the last candidate variable, telephone, appears to be much less

correlated with the target and gender variables. Unlike the other �ve candidate variables, the causal

e�ect of having a telephone and defaulting on a loan is not completely straightforward. What is

more likely though is the fact that both phone and default exhibit a common cause, which explains

why telephone has been used by the algorithm to split the data space into leaves associated to

positive and negative labels.

In an attempt to mitigate the fairness problem, we remove the telephone variable from the

decision tree. It is important to notice that we do not re-estimate the model but we simply exclude

this particular variable when partitioning the data space. Doing so leads to a new set of estimated

labels (Ŷ ), on which we run our inference tests. We see in Table 4 that removing telephone has an

important e�ect in terms of fairness as we cannot reject anymore the null hypothesis of fairness for

21As a robustness check, we carry out similar FPDP analyses for the fairness de�nitions in the Appendix. In Figure
A.6, we report the FPDP associated to the null hypothesis of conditional statistical parity, equal odds, and equal
opportunity. The main takeaway is that we identify the same six candidate variables as those identi�ed for statistical
parity, whatever the fairness de�nition considered. Since these variables are both correlated with gender and default,
they induce gender discrimination not only in the predicted default probabilities, but also in the FPR, TPR, and
accuracy rates.
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most measures. On the other hand, the e�ect on performance is trivial.

6 Conclusion

Credit scoring algorithms can be life-changing for many households and businesses. Indeed, they

impose conditions on who can access credit and at which terms. As a result, it is of primary

importance to make sure that algorithms comply with the fair lending principles written in the

law, and even so when they are based on complex and opaque ML techniques and big data. In

this paper, we propose a framework to formally check whether there exists a statistical signi�cant

di�erence in terms of rejection rates or interest rates between protected and unprotected groups

and whether this di�erence is only due to credit worthiness. Our framework provides guidance on

how algorithmic fairness can be monitored by lenders, controlled by their regulators, and improved

for the bene�t of protected groups.

The high legal and regulatory uncertainties surrounding the use of ML algorithms acts as an

impediment for �nancial service providers to innovate and invest in screening technologies (Evans

(2017), Bartlett et al. (2021b)). Furthermore, recent ruling in Europe against companies using

discriminatory algorithms (Geiger (2021)) as well as debate in the New York City Council to poten-

tially ban some automated tools used by corporations (Givens et al. (2021)) put a spotlight on this

concerns. As algorithmic discrimination of women and minorities may be completely unintentional

and can be embedded in data and/or in the inner workings of algorithms, it is more important than

ever for lenders and their regulators to bene�t from clear guidelines and tools able to red�ag any

form of non-legitimate discrimination. We believe our methodology can contribute to provide such

much needed guidelines and regulatory tools.

While we focus on access to credit, this methodology also can prove useful for studying other

life-changing decision-making algorithms. Indeed, similar algorithms are in use in the �elds of pre-

dictive justice (sentencing and probation), hiring (automated pre-screening of applicants), education

(university admission and scholarship granting), and housing (tenant selection).
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Figure 1: Numerical example of joint distribution between predicted outcome and protected at-
tribute for two classes of borrowers
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Figure 2: Feature Distributions
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Figure 3: Measures of association between features, target variables, and gender

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

X/Y Dependence

0.00

0.05

0.10

0.15

0.20

0.25

0.30

X/
D 
De

pe
nd

en
ce

AccountStatus

CreditDuration
CreditHistory

Purpose
CreditAmount

Savings

EmploymentDuration

InstallmentRate

Guarantor

ResidenceTime

Property

Age

OtherInstallmentPlan

Housing

NumberOfCredit
Job

NumberLiablePeople

Telephone

foreignWorker

Notes: This �gure displays the Cramer's V measures between each feature and the default variable (horizontal

axis) and the gender variable (vertical axis).

31



Figure 4: Fairness PDP for the statistical parity in TREE prime model
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Figure 5: Measures of association between features, target variables, and gender
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Table 1: Model performances with and without the protected feature

Panel A: Models with gender

LR LR (Ridge) TREE RF XGB SVM ANN

PCC 77.4 76.4 77.3 87.3 81.3 78.2 79.1
AUC 0.8279 0.8191 0.8266 0.938 0.8877 0.8107 0.8341

Panel B: Models without gender

LR LR (Ridge) TREE RF XGB SVM ANN

PCC 77.2 75.7 81.5 87.4 79.6 76.0 81.1
AUC 0.8264 0.8134 0.8866 0.9372 0.8261 0.806 0.8754

Notes: This table reports the percentage of correct classi�cation (PCC) and the area under the ROC curve

(AUC) for each scoring model, with gender (Panel A) and without gender (Panel B). LR: logistic regression,

LR(Ridge): logistic ridge regression, TREE: classi�cation tree, RF: random forest, XGB: XGBoosting, SVM:

support vector machine, ANN: arti�cial neural network.
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Table 2: Fairness tests for models with gender

LR Ridge TREE RF XGB SVM ANN

Statistical parity 0.0003* 0.0000* 0.0097* 0.0349* 0.0000* 0.0041* 0.0041*
Cond. parity Group 1 0.0003* 0.0000* 0.0035* 0.0214* 0.0000* 0.0008* 0.0036*
Cond. parity Group 2 0.0719 0.0781 0.4909 0.3226 0.0331* 0.3223 0.0395*
Cond. parity (global) 0.0003* 0.0000* 0.0110* 0.0434* 0.0000* 0.0022* 0.0017*
Equal odds 0.0185* 0.0009* 0.2387 0.8220 0.0004* 0.1436 0.0802
Equal opportunity 0.0888 0.0105* 0.3012 0.7796 0.0004* 0.1675 0.6554
Predictive equality 0.0242* 0.0060* 0.1801 0.5753 0.0945 0.1598 0.0277*

Notes: This table reports the p-values of the fairness tests (chi-squared) obtained for the scoring models

using gender as an explanatory variable. * indicates statistical signi�cance at 5%. LR: logistic regression,

LR(Ridge): logistic ridge regression, TREE: classi�cation tree, RF: random forest, XGB: XGBoosting, SVM:

support vector machine, ANN: arti�cial neural network.

35



Table 3: Fairness tests for models without gender

LR Ridge TREE RF XGB SVM ANN

Statistical parity 0.0734 0.1373 0.5310 0.1206 0.0965 0.2913 0.0067*
Cond. parity Group 1 0.0989 0.0513 0.5950 0.0966 0.0431* 0.1693 0.0072*
Cond. parity Group 2 0.0866 0.4967 0.2130 0.3226 0.3531 0.8506 0.0631
Cond. parity (global) 0.0590 0.1188 0.3998 0.1542 0.0841 0.3821 0.0048*
Equal odds 0.6712 0.8003 0.5645 0.9242 0.7202 0.6754 0.1727
Equal opportunity 0.7746 0.9042 0.8892 0.7796 0.4213 0.5175 0.6602
Predictive equality 0.3977 0.5115 0.2890 0.7783 0.9216 0.5451 0.0685

Notes: This table reports the p-values of the fairness tests (chi-squared) obtained for the scoring models

estimated without the gender variable. * indicates statistical signi�cance at 5%. LR: logistic regression,

LR(Ridge): logistic ridge regression, TREE: classi�cation tree, RF: random forest, XGB: XGBoosting,

SVM: support vector machine, ANN: arti�cial neural network.
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Table 4: Fairness tests for the TREE models

TREE TREE-prime TREE-modif

Statistical parity 0.5310 0.0216* 0.5195
Cond. parity Group 1 0.5950 0.0552 0.7849
Cond. parity Group 2 0.2130 0.0305* 0.0973
Cond. parity (global) 0.3998 0.0153* 0.2438
Equal odds 0.5645 0.0363* 0.3441
Equal opportunity 0.8892 0.0101* 0.4547
Predictive equality 0.2890 0.8852 0.2095

PCC 81.5 79.0 77.8
AUC 0.8866 0.8393 0.8345

Notes: This table reports the p-values of the fairness tests obtained for three di�erent decision trees. The

�rst one (TREE) corresponds to the decision tree without the gender variable. TREE-prime denotes a

decision tree obtained with the same feature space, but with an alternative hyperparameter tuning strategy.

TREE-modif is a modi�ed version of the previous one for which we retrieve the telephone variable from the

decision rules. * indicates statistical signi�cance at 5%.
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A Appendix

A.1 Fairness tests

As an example, we detail the notations for the standard chi-squared conditional independence tests.
Denote by A, B, C the variables of interest for a given fairness de�nition, with A ∈ {a1, a2} = {0, 1}
and B ∈ {b1, b2} = {0, 1} the two binary variables for which we test independence for, and C ∈
{c1, ..., ck, ..., cK} the conditioning variables. For instance, testing the null hypothesis H0,EO of equal

odds implies A = Ŷ , B = D, and C = Y. This notation encompasses most of the fairness metrics
used in the literature, such as statistical parity (A = Ŷ , B = D, and C = ∅), conditional statistical
parity (A = Ŷ , B = D, and C = Xc), predictive equality (A = Ŷ , B = D, and C = (Y = 1)), and
equal opportunity (A = Ŷ , B = D, and C = (Y = 0)).

Let us denote by nuvk the number of times outcome A = au, B = bv, and C = ck is observed
over the n instances, with

∑
u,v,k nuvk = n. The vector n = (n111, . . . , n22K) follows a multinomial

distribution with parameters n and p = (p111, . . . , p22K), the vector of coresponding probabilities
puvk ≥ 0 with

∑
u,v,k puvk = 1. The marginal distributions are de�ned by using the symbol "+"

which refers to summation over a subscript. Hence, pu++ , p+v+, and p++k refers respectively to
the marginal probabilities Pr(A = au), Pr(B = bu), and Pr(C = ck). Similarly, puv+ = Pr(A =
au, B = bv) denotes the joint probability of A and B. Within this framework, we can use a standard
Pearson chi-squared test for each conditioning event C = ck. The corresponding test statistic is
de�ned as:

χ2
(k) =

∑
u

∑
v

(nuvk − E (nuvk))
2

E (nuvk)
(11)

with E (nuvk) = nu+k × n+vk/n++k, where nu+k denotes the number of times outcome A = au and
C = ck is observed over the n instances, whatever the observed value of B, n+vk denotes the number
of times outcome B = bv and C = ck is observed whatever the observed value of A, and n++k is
number of outcomes with C = ck. The test statistic χ2

(k) for each class ck has an approximate
chi-squared distribution with one degree of freedom. Thus, under the null of fairness H0,i, the
global test statistic FH0,i =

∑
k χ

2
(k) has a chi-squared distribution with K degrees of freedom. For

a signi�cance level α ∈ ]0, 1/2[, the null hypothesis H0,i is rejected as soon as χ2 > d1−α, where
d1−α denotes the 1− α quantile of the χ2 (K) distribution.
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A.2 Database description

Table 5: Database description

Short name Complete name Variable type Domain

Age Age Numerical R+

CreditAmount Credit amount Numerical R+

CreditDuration Credit duration Numerical R+

AccountStatus Status of existing checking account Categorical #4

CreditHistory Credit history Categorical #5

Purpose Credit Purpose Categorical #10

Savings Status of savings accounts and bonds Categorical #5

EmploymentDuration Employment length Categorical #5

InstallmentRate Installment rate Numerical {1, 2, 3, 4}
Gender&PersonalStatus Personal status and gender Categorical #4

Guarantor Other debtors Categorical #3

ResidenceTime Period of present residency Numerical {1, 2, 3, 4}
Property Property Categorical #4

OtherInstallmentPlan Installment plans Categorical #3

Housing Residence Categorical #3

NumberOfCredit Number of existing credits Numerical {1, 2, 3, 4}
Job Employment Categorical #4

NumberLiablePeople Dependents Numerical {1, 2}
Telephone Telephone Binary #2

ForeignWorker Foreign worker Binary #2

CreditRisk Credit score Binary #2
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Table 6: Feature overview

Complete name Description

Age Age in years

Credit amount Credit amount

Credit duration Duration in month

Status of existing checking account
A11 : ... < 0 DM, A12 : 0 <= ... < 200 DM
A13 : ≥ 200 DM / salary assignments (1 year)

A14 : no checking account

Credit history

A30: no credits taken/ all credits paid back duly
A31: all credits at this bank paid back duly
A32: existing credits paid back duly till now

A33: delay in paying o� in the past
A34: other credits existing (not at this bank)

Credit Purpose

A40: car (new), A41: car (used), A42: equipment
A43: radio/television, A44: domestic appliances
A45: repairs, A46: education, A48: retraining

A49: business, A410: others

Status of savings accounts and bonds
A61: < 100 DM, A62: 100 6 x < 500
A63: 500 6 x < 1000, A64: ≥ 1000 DM
A65: unknown/ no savings account

Employment duration
A71: unemployed, A72: . < 1 year A73: 1 6 x < 4 years,

A74 : 4 6 x < 7 years, A75: ≥ 7 years

Installment rate Installment rate in percentage of disposable income

Personal status and gender
A91: male : divorced/separated

A92: female : divorced/separated/married
A93: male : single, A94: male : married/widowed

Other debtors A101: none, A102: co-applicant

Period of present residency Present residence since

Property
A121: real estate, A123: car or other,

A122: building society savings agreement
A124: unknown / no property

Installment plans A141: bank, A142: stores, A143: none

Housing A151: rent, A152: own, A153: for free

Number of existing credits Number of existing credits at this bank

Employment
A171: unemployed/ unskilled - non-resident

A172: unskilled - resident A173: skilled employee
A174: management/ self-employed/highly quali�ed

Dependents Number of people being liable to provide maintenance

Telephone A191: none, A192: yes

Foreign worker A201: yes, A202: no

Credit score 1: Good, 2: Bad
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A.3 Feature distribution by class of risk

Figure 6: Feature distribution by class of risk
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A.4 Decision tree

Figure 7: Decision tree for the TREE-prime model

Notes: This �gure displays the decision tree obtained with the hyperparameters mentionned in column

"TREE-prime" of table 7 and by excluding the gender variable from the features.
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A.5 Hyperparameters of machine-learning models

Table 7: Hyperparameter tuning

Hyperparameter set TREE TREE prime ANN SVM RF XGBoost

Criterion Entropy, Gini (Gini) Entropy, Gini (Gini) Entropy, Gini (Entropy)

Maximum depth of the tree 1-29 (20) 1-9 (7) 1-99 (82) 1-5 (2)

Minimum number of individuals required to split a node 2-9 (2) 2-59 (56) 2-49 (3)

Minimum number of individuals by leaf 1-19 (5) 1-59 (18) 1-29 (10)

Number of inputs compared at each split all,
√
k, log 2(k) (

√
k) all,

√
k, log 2(k) (all) all,

√
k, log 2(k) (all)

Decrease of the impurity greater than or equal to this value 0-0.9 (0) 0-0.9 (0) 0-0.9 (0)

Optimization method: Grid Search Yes

Number of hidden layers 1

Number of neurons by hidden layer 1-25 (20)

Maximum number of iterations 250

Activation function relu

Solver for weight optimization adam

L2 penalty (regularization term) parameter 0.0001

Early stopping True

Maximum number of epochs to not meet tol improvement 50

Regularization parameter 1

Kernel linear

Learning rate 0-0.9 (0.5)

Minimum sum of instance weight (hessian) needed in a child 1-39 (15)

Min. loss reduction required to make a further partition of a leaf node 0-0.9 (0.3)

Subsample ratio of columns when constructing each tree 0-0.9 (0.4)

Subsample ratio of columns for each level 0-0.9 (0.1)

Subsample ratio of columns for each node (split) 0-0.9 (0.2)

Notes: This table displays the hyperparameter tuning procedures for the various machine-learning models

used in the numerical analysis: Decision Tree (Tree), Arti�cial Neural Network (ANN), Support Vector Ma-

chine (SVM), Random Forest (RF), and XGBoost. The values in parentheses are the optimal hyperparameter

values.
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A.6 FPDP analysis for TREE-prime model

Figure 8: Fairness PDP for conditional statistical parity in TREE prime model
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Figure 9: Fairness PDP for equal odds in TREE prime model
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TREE-prime model with indirect discrimination. The Y-axis displays the p-value of the equal odds test

statistic. Red line represents the 10% threshold.
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Figure 10: Fairness PDP for equal opportunity in TREE prime model
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Notes: Each subplot displays the FPDP for equal opportunity, associated to a given feature and the clas-

si�cation TREE-prime model with indirect discrimination. The Y-axis displays the p-value of the equal

opportunity. Red line represents the 10% threshold.
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